A survey of gravitational waves, the Bondi-Sachs formalism and the gravitational memory effect in general relativity and beyond

Thomas Albers Raviola

August 27, 2024

Bondi-Sachs formalism in a nutshell

Description at null-infinity of the dynamic and, in particular, the change of mass and total momentum of a system through the emission of gravitational waves.

Present the Bondi and Bondi-Sachs metrics

Objectives

- Present the Bondi and Bondi-Sachs metrics
- Explain what the news function / tensor is

Objectives

- Present the Bondi and Bondi-Sachs metrics
- Explain what the news function / tensor is
- Show where the mass-loss and momentum-loss formulae come from

Objectives

- Present the Bondi and Bondi-Sachs metrics
- Explain what the news function / tensor is
- Show where the mass-loss and momentum-loss formulae come from
- Explain briefly what the memory effect is and its relation to the news tensor

Preliminaries

Notation

- ▶ Signature: (-,+,+,+)
- ▶ Partial derivatives: f_{μ} , f_{r} , f_{θ} , f_{ϕ} , ..., or ∂_{μ} for tensors
- General tensor identities: g_{ab}, R_{ab}, ...
- Tensor identities in a given base: $g_{\mu\nu}$, $R_{\mu\nu}$, ...

• "Geometrized" units
$$G = c = 1$$

A link to all sources, a copy of the thesis and these slides is provided at the end of this presentation.

Consider the Minkowski metric:

$$g = -\mathrm{d}t^2 + \mathrm{d}r^2 + r^2(\mathrm{d}\theta^2 + \sin^2\theta\,\mathrm{d}\phi^2\,). \tag{1}$$

Consider the Minkowski metric:

$$g = -\mathrm{d}t^2 + \mathrm{d}r^2 + r^2(\mathrm{d}\theta^2 + \sin^2\theta\,\mathrm{d}\phi^2\,). \tag{1}$$

Let us introduce null-coordinate u such that

$$u = t - r$$
.

Consider the Minkowski metric:

$$g = -\mathrm{d}t^2 + \mathrm{d}r^2 + r^2(\mathrm{d}\theta^2 + \sin^2\theta\,\mathrm{d}\phi^2\,). \tag{1}$$

Let us introduce null-coordinate u such that

$$u = t - r$$
.

Thus, equation (1) becomes

$$g = -\mathrm{d}u^2 - 2\mathrm{d}u\,\mathrm{d}r + r^2(\mathrm{d}\theta^2 + \sin^2\theta\,\mathrm{d}\phi^2) \tag{2}$$

The coordinate u satisfies:

$$g^{\mu\nu}(\partial_{\mu}u)(\partial_{\nu}u) = 0.$$
 (3)

The coordinate u satisfies:

$$g^{\mu\nu}(\partial_{\mu}u)(\partial_{\nu}u) = 0.$$
(3)

Hypersurfaces u = constant are light-like. Normal vector k^a of such surfaces satisfies

$$k_{\mu} = \partial_{\mu} u, \qquad k^a k_a = 0, \qquad k^b \nabla_b k^a = 0,$$

and generate rays, along which θ and ϕ are constant.

Figure: Illustration of a retarded time coordinate system. Source [5]

First, we list the requirements for the metric:

Describe an isolated system

- Describe an isolated system
- Asymptotically flat

- Describe an isolated system
- Asymptotically flat
- Not necessarily static

- Describe an isolated system
- Asymptotically flat
- Not necessarily static
- Axially symmetric (requirement is dropped later on)

Hypersurfaces u = constant everywhere tangent to the local lightcone

- Hypersurfaces u = constant everywhere tangent to the local lightcone
- r is the corresponding luminosity distance, i.e. area of surface element u, r = constant given by r² sin θ dθ dr

- Hypersurfaces u = constant everywhere tangent to the local lightcone
- r is the corresponding luminosity distance, i.e. area of surface element u, r = constant given by r² sin θ dθ dr
- $\blacktriangleright \ \theta$ and ϕ constant along rays

Thus, we arrive at the metric first presented by Bondi in [1]:

$$g = (U^2 r^2 e^{2\gamma} - V r^{-1} e^{2\beta}) du^2 - 2e^{2\beta} du dr$$
$$- 2Ur^2 e^{2\gamma} du d\theta + r^2 (e^{2\gamma} d\theta^2 + e^{-2\gamma} \sin^2 \theta d\phi^2),$$

Thus, we arrive at the metric first presented by Bondi in [1]:

$$g = (U^2 r^2 e^{2\gamma} - V r^{-1} e^{2\beta}) du^2 - 2 e^{2\beta} du dr$$
$$- 2U r^2 e^{2\gamma} du d\theta + r^2 (e^{2\gamma} d\theta^2 + e^{-2\gamma} \sin^2 \theta d\phi^2),$$

together with its inverse

$$g^{\mu\nu} = \begin{pmatrix} 0 & -e^{-2\beta} & 0 & 0 \\ -e^{-2\beta} & Ve^{-2\beta}r^{-1} & -Ue^{-2\beta} & 0 \\ 0 & -Ue^{-2\beta} & e^{-2\gamma}r^{-2} & 0 \\ 0 & 0 & 0 & e^{2\gamma}r^{-2}\sin^{-2}\theta \end{pmatrix},$$

where β , γ , U and V are functions of u, r and θ .

Thus, we arrive at the metric first presented by Bondi in [1]:

$$g = (U^2 r^2 e^{2\gamma} - V r^{-1} e^{2\beta}) du^2 - 2 e^{2\beta} du dr$$
$$- 2U r^2 e^{2\gamma} du d\theta + r^2 (e^{2\gamma} d\theta^2 + e^{-2\gamma} \sin^2 \theta d\phi^2),$$

together with its inverse

$$g^{\mu\nu} = \begin{pmatrix} 0 & -e^{-2\beta} & 0 & 0 \\ -e^{-2\beta} & Ve^{-2\beta}r^{-1} & -Ue^{-2\beta} & 0 \\ 0 & -Ue^{-2\beta} & e^{-2\gamma}r^{-2} & 0 \\ 0 & 0 & 0 & e^{2\gamma}r^{-2}\sin^{-2}\theta \end{pmatrix},$$

where β , γ , U and V are functions of u,r and θ . Note that $g^{00} = 0$, hence $g^{\mu\nu}(\partial_{\mu}u)(\partial_{\nu}u) = 0$.

For the Bondi metric

$$g = (U^2 r^2 e^{2\gamma} - V r^{-1} e^{2\beta}) du^2 - 2 e^{2\beta} du dr$$
$$- 2U r^2 e^{2\gamma} du d\theta + r^2 (e^{2\gamma} d\theta^2 + e^{-2\gamma} \sin^2 \theta d\phi^2),$$

choosing the following values for the coefficients

$$\beta = 0, \qquad \gamma = 0, \qquad U = 0, \qquad V = r,$$

yields the Minkowski metric.

We wish to solve Einstein's vacuum field equations for the Bondi metric:

$$R_{\mu\nu}=0.$$

We wish to solve Einstein's vacuum field equations for the Bondi metric:

$$R_{\mu
u} = 0.$$

In our case, it holds identically that

$$R_{03}=R_{13}=R_{23}=0.$$

We wish to solve Einstein's vacuum field equations for the Bondi metric:

$$R_{\mu\nu} = 0.$$

In our case, it holds identically that

$$R_{03}=R_{13}=R_{23}=0.$$

Furthermore, from the Bianchi identities it follows that

$$R_{01} = 0$$

as a consequence of

$$R_{11} = R_{12} = R_{22} = R_{33} = 0 \tag{4}$$

Thus, the vacuum field equations are reduced to the four independent equations

$$R_{11}=R_{12}=R_{22}=R_{33}=0,$$

known as main equations

Thus, the vacuum field equations are reduced to the four independent equations

$$R_{11}=R_{12}=R_{22}=R_{33}=0,$$

known as main equations, and the supplementary conditions

$$0 = r^{-2} e^{-2\beta} (r^2 R_{02})_r, \tag{5}$$

$$0 = r^{-2} e^{-2\beta} (r^2 R_{00})_r + (g^{12} \partial_1 + g^{22} \partial_2 - g^{\mu\nu} \Gamma^2_{\mu\nu}) R_{02}, \qquad (6)$$

derived from the Bianchi identities similar to $R_{01} = 0$.

Series expansion

The Sommerfeld's radiation condition 1 suggests ansatz in form of negative powers of \boldsymbol{r}

 $^{^1\}mbox{Isolated}$ system; we consider only solutions radiating outwards

Series expansion

The Sommerfeld's radiation condition 1 suggests ansatz in form of negative powers of \boldsymbol{r}

$$\gamma = \gamma_{1}r^{-1} + \gamma_{2}r^{-2} \dots$$

$$\beta = \dots \beta_{-1}r + \beta_{0} + \beta_{1}r^{-1} + \beta_{2}r^{-2} \dots$$

$$U = \dots U_{-1}r + U_{0} + U_{1}r^{-1} + U_{2}r^{-2} \dots$$

$$V = \dots V_{-1}r + V_{0} + V_{1}r^{-1} + V_{2}r^{-2} \dots$$

$$(7)$$

Equivalent to

$$\lim_{r \to \infty} (r\gamma)_r |_{u = \text{const}} = 0 \tag{8}$$

¹Isolated system; we consider only solutions radiating outwards

Solution of the Bondi metric

Thus, $R_{11} = R_{12} = R_{22} = R_{33} = 0$ together with ansatz (7) yields
Solution of the Bondi metric

Thus,
$$R_{11} = R_{12} = R_{22} = R_{33} = 0$$
 together with ansatz (7) yields
 $\gamma = cr^{-1} + [C - \frac{1}{6}c^3]r^{-3} + \dots,$
 $\beta = -\frac{1}{4}c^2r^{-2} + \dots,$
 $U = -(c_{\theta} + 2c\cot\theta)r^{-2} + [2N + 3cc_{\theta} + 4c^2\cot\theta]r^{-3}$
 $+ \dots,$
 $V = r - 2M - [N_{\theta} + N\cot\theta - c_{\theta}^2 - 4cc_{\theta} - \frac{1}{2}c^2(1 + 8\cot^2\theta)]r^{-1}$
 $+ \dots,$

where $c(u, \theta)$, $M(u, \theta)$ and $N(u, \theta)$ are integration functions from solving the vacuum field equations. $C(u, \theta)$ is a composition of them.

Solution of the Bondi metric

Similarly, the supplementary conditions

$$\begin{split} 0 &= r^{-2} \mathrm{e}^{-2\beta} (r^2 R_{02})_r, \\ 0 &= r^{-2} \mathrm{e}^{-2\beta} (r^2 R_{00})_r + (g^{12} \partial_1 + g^{22} \partial_2 - g^{\mu\nu} \Gamma^2_{\ \mu\nu}) R_{02}, \end{split}$$

Solution of the Bondi metric

Similarly, the supplementary conditions

$$\begin{split} 0 &= r^{-2} \mathrm{e}^{-2\beta} (r^2 R_{02})_r, \\ 0 &= r^{-2} \mathrm{e}^{-2\beta} (r^2 R_{00})_r + (g^{12} \partial_1 + g^{22} \partial_2 - g^{\mu\nu} \Gamma^2_{\ \mu\nu}) R_{02}, \end{split}$$

yield

$$M_{u} = -c_{u}^{2} + \frac{1}{2}(c_{\theta\theta} + 3c_{\theta}\cot\theta - 2c)_{u}, \qquad (9)$$

$$-3N_{u} = M_{\theta} + 3cc_{u\theta} + 4cc_{u}\cot\theta + c_{u}c_{\theta}.$$
 (10)

Known as the mass-loss and momentum-loss formulae.

News and mass-loss

The mass of the system is defined as the mean value of $M(u, \theta)$ over the sphere

$$m(u) = \frac{1}{2} \int_0^{\pi} M(u,\theta) \sin \theta \, \mathrm{d}\theta \,. \tag{11}$$

News and mass-loss

The mass of the system is defined as the mean value of $M(u, \theta)$ over the sphere

$$m(u) = \frac{1}{2} \int_0^{\pi} M(u,\theta) \sin \theta \, \mathrm{d}\theta \,. \tag{11}$$

Hence

$$m_u = -\frac{1}{2} \int_0^{\pi} c_u^2 \sin \theta \,\mathrm{d}\theta \,. \tag{12}$$

Therefore, changes in the system are contained within c_u , which receives for this reason the name *news function*.

Main result of the publication of Bondi, Van der Burg and Metzner

The mass of a system is constant if and only if there is no news. If there is news, the mass decreases monotonically as long as the news continues [2].

We now turn our attention to the more general Bondi-Sachs metric. We list again our requirements for the metric:

- Describe an isolated system
- Asymptotically flat
- Not necessarily static
- Axially symmetric

As for the coordinates u, r, θ and ϕ , we wish to keep the properties of the coordinates of the retarded time Minkowski metric:

- Hypersurfaces u = constant everywhere tangent to the local lightcone
- r is the corresponding luminosity distance, i.e. area of surface element u, r = constant is r² sin θ dθ dr
- $\blacktriangleright \ \theta$ and ϕ constant along rays

The coordinates u, r, θ and ϕ obey the latter requirements if and only if the metric has the form [4]:

The coordinates u, r, θ and ϕ obey the latter requirements if and only if the metric has the form [4]:

$$g = -2\mathrm{e}^{2\beta}\mathrm{d}u\,(\mathrm{d}r + F\mathrm{d}u\,) + r^2q_{AB}(\mathrm{d}\sigma^A - U^A\mathrm{d}u\,)(\mathrm{d}\sigma^B - U^B\mathrm{d}u\,),$$
(13)

The coordinates u, r, θ and ϕ obey the latter requirements if and only if the metric has the form [4]:

$$g = -2\mathrm{e}^{2\beta}\mathrm{d}u\,(\mathrm{d}r + F\mathrm{d}u\,) + r^2q_{AB}(\mathrm{d}\sigma^A - U^A\mathrm{d}u\,)(\mathrm{d}\sigma^B - U^B\mathrm{d}u\,),$$
(13)

with the inverse

$$g^{-1} = 2Fe^{-2\beta}\partial_r\partial_r - 2e^{2\beta}\partial_u\partial_r - 2e^{-2\beta}U^A\partial_r\partial_A + r^{-2}q^{AB}\partial_A\partial_B,$$
(14)
where $A, B = 2, 3$ and $\sigma^{2,3} = \theta, \phi$.

Comparison with the Bondi metric

The Bondi metric

$$g = (U^2 r^2 e^{2\gamma} - V r^{-1} e^{2\beta}) du^2 - 2 e^{2\beta} du dr$$
$$- 2U r^2 e^{2\gamma} du d\theta + r^2 (e^{2\gamma} d\theta^2 + e^{-2\gamma} \sin^2 \theta d\phi^2),$$

is a special case of the Bondi-Sachs metric

$$g = -2\mathrm{e}^{2\beta}\mathrm{d} u\,(\mathrm{d} r + F\mathrm{d} u\,) + r^2 q_{AB}(\mathrm{d} \sigma^A - U^A\mathrm{d} u\,)(\mathrm{d} \sigma^B - U^B\mathrm{d} u\,).$$

Comparison with the Bondi metric

The Bondi metric

$$g = (U^2 r^2 e^{2\gamma} - V r^{-1} e^{2\beta}) du^2 - 2 e^{2\beta} du dr$$
$$- 2U r^2 e^{2\gamma} du d\theta + r^2 (e^{2\gamma} d\theta^2 + e^{-2\gamma} \sin^2 \theta d\phi^2),$$

is a special case of the Bondi-Sachs metric

$$g = -2e^{2\beta} du (dr + F du) + r^2 q_{AB} (d\sigma^A - U^A du) (d\sigma^B - U^B du).$$

To see this, let

$$F = V/2r, \qquad \beta = \beta_{\text{Bondi}}, \qquad U^{A} = (U_{\text{Bondi}}, 0),$$
$$q_{AB} = \begin{pmatrix} e^{2\gamma} & 0\\ 0 & e^{-2\gamma} \sin^{2} \theta \end{pmatrix}$$

Series expansion

As it was the case with the Bondi metric, the coefficients of the Bondi-Sachs metric can also be expanded and take the following form:

Series expansion

As it was the case with the Bondi metric, the coefficients of the Bondi-Sachs metric can also be expanded and take the following form:

$$F(u, r, \sigma^{A}) = \overline{F}(u, \sigma^{A}) - \frac{M}{r} + \dots,$$

$$\beta(u, r, \sigma^{A}) = \frac{\overline{\beta}(u, \sigma_{A})}{r^{2}} + \dots,$$

$$q_{AB}(u, r, \sigma^{A}) = \overline{q}_{AB}(u, \sigma^{A}) + \frac{c_{AB}}{r} + \dots,$$

$$U^{A}(u, r, \sigma^{A}) = \frac{\overline{U}(u, \sigma^{A})}{r^{2}} - \frac{2}{3r^{3}}\overline{q}^{AB}\left(\overline{P}^{A} + c_{BC}\overline{U}^{C} + \partial_{B}\overline{\beta}\right) + \dots,$$

where \bar{q}_{AB} is the metric of the round 2-sphere.

Equations of motion

Solving Einstein's field equations order by order in r yields

$$\begin{split} 0 &= (\bar{q}_{AB})_u, \\ 0 &= \bar{\beta} + \frac{1}{32} c_{AB} c^{AB}, \\ 0 &= \bar{R} - 4\bar{F}, \\ 0 &= \bar{U}^A + \frac{1}{2} \bar{\nabla}_B c^{AB}, \end{split}$$

where \overline{R} is the Ricci scalar and ∇_A is the Levi-Civita connection with respect to the \overline{q}_{AB} metric.

Equations of motion

Solving Einstein's field equations order by order in r yields

$$\begin{split} 0 &= (\bar{q}_{AB})_u, \\ 0 &= \bar{\beta} + \frac{1}{32} c_{AB} c^{AB}, \\ 0 &= \bar{R} - 4\bar{F}, \\ 0 &= \bar{U}^A + \frac{1}{2} \bar{\nabla}_B c^{AB}, \end{split}$$

where \overline{R} is the Ricci scalar and ∇_A is the Levi-Civita connection with respect to the \overline{q}_{AB} metric. We define the *news tensor* as follows:

$$N_{AB} = (c_{AB})_u \tag{15}$$

Equations of motion: Mass-loss and momentum-loss formulae

Using our definition of the news tensor while solving the field equations yields the loss formulae:

$$\begin{split} M_{u} &= -\frac{1}{8} N_{AB} N^{AB} + \frac{1}{4} \bar{\nabla}_{A} \bar{\nabla}_{B} N^{AB}, \\ (\bar{P}_{A})_{u} &= \bar{\nabla}_{A} M + \frac{1}{8} \bar{\nabla}_{A} \left(c^{BC} N_{CB} \right) - \frac{1}{4} N^{BC} \bar{\nabla}_{A} c_{BC} \\ &+ \frac{1}{4} \bar{\nabla}_{C} \left(\bar{\nabla}_{A} \bar{\nabla}_{B} C^{BC} - \bar{\nabla}^{C} \bar{\nabla}^{B} C_{AB} \right) \\ &+ \frac{1}{4} \bar{\nabla}_{B} \left(N^{BC} c_{AC} - c^{BC} N_{AC} \right). \end{split}$$

Permanent relative displacement due to a burst of gravitational waves [3].

Figure: Sketch of the metric perturbation as a function of time. Source [3]

Let us consider the deviation equation for particles in free fall:

$$(v^a \nabla_a)^2 \xi^b = -R_{acd}{}^b v^a v^d \xi^c.$$
(16)

Let us consider the deviation equation for particles in free fall:

$$(v^a \nabla_a)^2 \xi^b = -R_{acd}{}^b v^a v^d \xi^c.$$
(16)

Near null-infinity we have $v^a = \delta_0^a$. Hence, equation (16) reduces to

$$(\xi^{\mu})_{uu} = -R_{0\alpha 0}{}^{\mu}\xi^{\alpha}, \qquad (17)$$

where for $r \to \infty$, $R_{abcd} \sim C_{abcd}$ (C_{abcd} is the Weyl tensor).

Let us consider the deviation equation for particles in free fall:

$$(v^a \nabla_a)^2 \xi^b = -R_{acd}{}^b v^a v^d \xi^c.$$
(16)

Near null-infinity we have $v^a = \delta_0^a$. Hence, equation (16) reduces to

$$(\xi^{\mu})_{uu} = -R_{0\alpha 0}{}^{\mu}\xi^{\alpha}, \qquad (17)$$

where for $r \to \infty$, $R_{abcd} \sim C_{abcd}$ (C_{abcd} is the Weyl tensor). On the other hand, one can prove that

$$C_{0A0B} = -\frac{1}{2} (N_{AB})_u.$$
 (18)

Let us consider the deviation equation for particles in free fall:

$$(v^a \nabla_a)^2 \xi^b = -R_{acd}{}^b v^a v^d \xi^c.$$
(16)

Near null-infinity we have $v^a = \delta_0^a$. Hence, equation (16) reduces to

$$(\xi^{\mu})_{uu} = -R_{0\alpha 0}{}^{\mu}\xi^{\alpha}, \qquad (17)$$

where for $r \to \infty$, $R_{abcd} \sim C_{abcd}$ (C_{abcd} is the Weyl tensor). On the other hand, one can prove that

$$C_{0A0B} = -\frac{1}{2} (N_{AB})_u.$$
(18)

Thus, the news tensor is not only related to the energy radiated through gravitational waves, but also the memory effect.

Further developments

The proposal for future work is to use the loss formulae and results like, for example the memory effect, to fingerprint different theories of modified gravity.

Further developments

The proposal for future work is to use the loss formulae and results like, for example the memory effect, to fingerprint different theories of modified gravity. A method to discard or validate alternative theories.

 Using a set of coordinates based on the retarded time Minkowski metric we introduced the family of Bondi-Sachs metrics.

- Using a set of coordinates based on the retarded time Minkowski metric we introduced the family of Bondi-Sachs metrics.
- Solving Einstein's vacuum equations yields the loss formulae, which describe change of mass and total momentum of a system due to emission of gravitational waves.

- Using a set of coordinates based on the retarded time Minkowski metric we introduced the family of Bondi-Sachs metrics.
- Solving Einstein's vacuum equations yields the loss formulae, which describe change of mass and total momentum of a system due to emission of gravitational waves.
- The news tensor, closely related to the loss formulae, describes how the emission of gravitational waves is related to the memory effect in general relativity.

- Using a set of coordinates based on the retarded time Minkowski metric we introduced the family of Bondi-Sachs metrics.
- Solving Einstein's vacuum equations yields the loss formulae, which describe change of mass and total momentum of a system due to emission of gravitational waves.
- The news tensor, closely related to the loss formulae, describes how the emission of gravitational waves is related to the memory effect in general relativity.
- It may be possible in the future to discard or validate theories of alternative gravity based on these results.

Sources

- [1] Hermann Bondi. Gravitational Waves in General Relativity.
- [2] Hermann Bondi, M. G. J. Van der Burg, and A. W. K. Metzner. Gravitational waves in general relativity, VII. Waves from axi-symmetric isolated system.
- [3] Luca Ciambelli et al. Cornering Quantum Gravity.
- [4] R. Sachs. Asymptotic Symmetries in Gravitational Theory.
- [5] R. K. : Sachs and Hermann Bondi. Gravitational waves in general relativity VIII. Waves in asymptotically flat space-time.

Detailed list of sources and a copy of the thesis are available on https://thomaslabs.org/talks/ bachelor-thesis.html

